

1. Reduce the equation $x+\sqrt{3} y-6=0$ into Slope - intercept form.
2. Write equation of a line parallel to x axis and passing through $(2,3)$
3. Find the value of m and c if the line $y=m x+c$ is parallel to $3 x-2 y=1$ and passing through the point $(3,5)$ Ans: $\frac{3}{2}$ and $\frac{1}{2}$
4. Show that points $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right),(\mathrm{a}, 0)$ are collinear if $\mathrm{t}_{1} \mathrm{t}_{2}=-1$
$5 \quad$ Find the equation of line passing through the intersection of lines $4 x-3 y=0$ and $2 x-5 y+3=0$ and parallel to $4 x+5 y+6=0 \quad$ Ans: $28 x+35 y-48=0$
5. What are the points on x axis whose perpendicular distance from the line $4 x+3 y=12$ is 4 units.

Ans: $(8,0)$ and $(-2,0)$
7.

Find the equation of a line that cuts equal intercepts on the coordinate axes and passing through
$(-2,-3)$.
Ans: $x+y+5=0$
8. Find the distance between the lines $5 x+12 y+6=0$ and $10 x+24 y+24=0 \quad$ Ans: $\frac{6}{13}$
9. Without using Pythagoras theorem show that $(4,4),(3,5)$ and $(-4,1)$ are the vertices of right triangle.
10. The equation of the side of an equilateral triangle is $x+y+2=0$ and its one of the vertex is $(2,-1)$. Find the equations of the other two sides.

Ans: $(2-\sqrt{3}) x-y-5+2 \sqrt{3}=0 ;(2+\sqrt{3}) x-y-5-2 \sqrt{3}=0$
11. Reduce the equation $2 \mathrm{x}-2 \mathrm{y}=3$ into i) slope- intercept form ii) Intercept form iii) Normal form
12. The vertices of a triangle are $(10,4),(-4,9)$ and $(-2,-1)$. Find the orthocentre. $\left(-1, \frac{9}{5}\right)$
13. Find the image of the point $(1,2)$ with respect to the line $x-3 y+4=0 \quad$ Ans: $\left(\frac{6}{5}, \frac{7}{5}\right)$
14. The opposite angular points of a square are $(3,4)$ and $(1,-1)$. Find the coordinates of the other two vertices.

$$
\text { Ans: }\left(-\frac{1}{2}, \frac{5}{2}\right) \text { and }\left(\frac{9}{2}, \frac{1}{2}\right)
$$

